(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
2ndspos(0', Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0', Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0'))
plus(0', Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0', Y) → 0'
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
from(X) → cons(X, n__from(s(X)))
2ndspos(0', Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0', Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0'))
plus(0', Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0', Y) → 0'
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X
Types:
from :: s:0' → n__from:cons:cons2
cons :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
n__from :: s:0' → n__from:cons:cons2
s :: s:0' → s:0'
2ndspos :: s:0' → n__from:cons:cons2 → rnil:rcons
0' :: s:0'
rnil :: rnil:rcons
cons2 :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
activate :: n__from:cons:cons2 → n__from:cons:cons2
rcons :: posrecip:negrecip → rnil:rcons → rnil:rcons
posrecip :: s:0' → posrecip:negrecip
2ndsneg :: s:0' → n__from:cons:cons2 → rnil:rcons
negrecip :: s:0' → posrecip:negrecip
pi :: s:0' → rnil:rcons
plus :: s:0' → s:0' → s:0'
times :: s:0' → s:0' → s:0'
square :: s:0' → s:0'
hole_n__from:cons:cons21_0 :: n__from:cons:cons2
hole_s:0'2_0 :: s:0'
hole_rnil:rcons3_0 :: rnil:rcons
hole_posrecip:negrecip4_0 :: posrecip:negrecip
gen_n__from:cons:cons25_0 :: Nat → n__from:cons:cons2
gen_s:0'6_0 :: Nat → s:0'
gen_rnil:rcons7_0 :: Nat → rnil:rcons
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
2ndspos,
2ndsneg,
plus,
timesThey will be analysed ascendingly in the following order:
2ndspos = 2ndsneg
plus < times
(6) Obligation:
TRS:
Rules:
from(
X) →
cons(
X,
n__from(
s(
X)))
2ndspos(
0',
Z) →
rnil2ndspos(
s(
N),
cons(
X,
Z)) →
2ndspos(
s(
N),
cons2(
X,
activate(
Z)))
2ndspos(
s(
N),
cons2(
X,
cons(
Y,
Z))) →
rcons(
posrecip(
Y),
2ndsneg(
N,
activate(
Z)))
2ndsneg(
0',
Z) →
rnil2ndsneg(
s(
N),
cons(
X,
Z)) →
2ndsneg(
s(
N),
cons2(
X,
activate(
Z)))
2ndsneg(
s(
N),
cons2(
X,
cons(
Y,
Z))) →
rcons(
negrecip(
Y),
2ndspos(
N,
activate(
Z)))
pi(
X) →
2ndspos(
X,
from(
0'))
plus(
0',
Y) →
Yplus(
s(
X),
Y) →
s(
plus(
X,
Y))
times(
0',
Y) →
0'times(
s(
X),
Y) →
plus(
Y,
times(
X,
Y))
square(
X) →
times(
X,
X)
from(
X) →
n__from(
X)
activate(
n__from(
X)) →
from(
X)
activate(
X) →
XTypes:
from :: s:0' → n__from:cons:cons2
cons :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
n__from :: s:0' → n__from:cons:cons2
s :: s:0' → s:0'
2ndspos :: s:0' → n__from:cons:cons2 → rnil:rcons
0' :: s:0'
rnil :: rnil:rcons
cons2 :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
activate :: n__from:cons:cons2 → n__from:cons:cons2
rcons :: posrecip:negrecip → rnil:rcons → rnil:rcons
posrecip :: s:0' → posrecip:negrecip
2ndsneg :: s:0' → n__from:cons:cons2 → rnil:rcons
negrecip :: s:0' → posrecip:negrecip
pi :: s:0' → rnil:rcons
plus :: s:0' → s:0' → s:0'
times :: s:0' → s:0' → s:0'
square :: s:0' → s:0'
hole_n__from:cons:cons21_0 :: n__from:cons:cons2
hole_s:0'2_0 :: s:0'
hole_rnil:rcons3_0 :: rnil:rcons
hole_posrecip:negrecip4_0 :: posrecip:negrecip
gen_n__from:cons:cons25_0 :: Nat → n__from:cons:cons2
gen_s:0'6_0 :: Nat → s:0'
gen_rnil:rcons7_0 :: Nat → rnil:rcons
Generator Equations:
gen_n__from:cons:cons25_0(0) ⇔ n__from(0')
gen_n__from:cons:cons25_0(+(x, 1)) ⇔ cons(0', gen_n__from:cons:cons25_0(x))
gen_s:0'6_0(0) ⇔ 0'
gen_s:0'6_0(+(x, 1)) ⇔ s(gen_s:0'6_0(x))
gen_rnil:rcons7_0(0) ⇔ rnil
gen_rnil:rcons7_0(+(x, 1)) ⇔ rcons(posrecip(0'), gen_rnil:rcons7_0(x))
The following defined symbols remain to be analysed:
plus, 2ndspos, 2ndsneg, times
They will be analysed ascendingly in the following order:
2ndspos = 2ndsneg
plus < times
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_s:0'6_0(
n9_0),
gen_s:0'6_0(
b)) →
gen_s:0'6_0(
+(
n9_0,
b)), rt ∈ Ω(1 + n9
0)
Induction Base:
plus(gen_s:0'6_0(0), gen_s:0'6_0(b)) →RΩ(1)
gen_s:0'6_0(b)
Induction Step:
plus(gen_s:0'6_0(+(n9_0, 1)), gen_s:0'6_0(b)) →RΩ(1)
s(plus(gen_s:0'6_0(n9_0), gen_s:0'6_0(b))) →IH
s(gen_s:0'6_0(+(b, c10_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
from(
X) →
cons(
X,
n__from(
s(
X)))
2ndspos(
0',
Z) →
rnil2ndspos(
s(
N),
cons(
X,
Z)) →
2ndspos(
s(
N),
cons2(
X,
activate(
Z)))
2ndspos(
s(
N),
cons2(
X,
cons(
Y,
Z))) →
rcons(
posrecip(
Y),
2ndsneg(
N,
activate(
Z)))
2ndsneg(
0',
Z) →
rnil2ndsneg(
s(
N),
cons(
X,
Z)) →
2ndsneg(
s(
N),
cons2(
X,
activate(
Z)))
2ndsneg(
s(
N),
cons2(
X,
cons(
Y,
Z))) →
rcons(
negrecip(
Y),
2ndspos(
N,
activate(
Z)))
pi(
X) →
2ndspos(
X,
from(
0'))
plus(
0',
Y) →
Yplus(
s(
X),
Y) →
s(
plus(
X,
Y))
times(
0',
Y) →
0'times(
s(
X),
Y) →
plus(
Y,
times(
X,
Y))
square(
X) →
times(
X,
X)
from(
X) →
n__from(
X)
activate(
n__from(
X)) →
from(
X)
activate(
X) →
XTypes:
from :: s:0' → n__from:cons:cons2
cons :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
n__from :: s:0' → n__from:cons:cons2
s :: s:0' → s:0'
2ndspos :: s:0' → n__from:cons:cons2 → rnil:rcons
0' :: s:0'
rnil :: rnil:rcons
cons2 :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
activate :: n__from:cons:cons2 → n__from:cons:cons2
rcons :: posrecip:negrecip → rnil:rcons → rnil:rcons
posrecip :: s:0' → posrecip:negrecip
2ndsneg :: s:0' → n__from:cons:cons2 → rnil:rcons
negrecip :: s:0' → posrecip:negrecip
pi :: s:0' → rnil:rcons
plus :: s:0' → s:0' → s:0'
times :: s:0' → s:0' → s:0'
square :: s:0' → s:0'
hole_n__from:cons:cons21_0 :: n__from:cons:cons2
hole_s:0'2_0 :: s:0'
hole_rnil:rcons3_0 :: rnil:rcons
hole_posrecip:negrecip4_0 :: posrecip:negrecip
gen_n__from:cons:cons25_0 :: Nat → n__from:cons:cons2
gen_s:0'6_0 :: Nat → s:0'
gen_rnil:rcons7_0 :: Nat → rnil:rcons
Lemmas:
plus(gen_s:0'6_0(n9_0), gen_s:0'6_0(b)) → gen_s:0'6_0(+(n9_0, b)), rt ∈ Ω(1 + n90)
Generator Equations:
gen_n__from:cons:cons25_0(0) ⇔ n__from(0')
gen_n__from:cons:cons25_0(+(x, 1)) ⇔ cons(0', gen_n__from:cons:cons25_0(x))
gen_s:0'6_0(0) ⇔ 0'
gen_s:0'6_0(+(x, 1)) ⇔ s(gen_s:0'6_0(x))
gen_rnil:rcons7_0(0) ⇔ rnil
gen_rnil:rcons7_0(+(x, 1)) ⇔ rcons(posrecip(0'), gen_rnil:rcons7_0(x))
The following defined symbols remain to be analysed:
times, 2ndspos, 2ndsneg
They will be analysed ascendingly in the following order:
2ndspos = 2ndsneg
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
times(
gen_s:0'6_0(
n928_0),
gen_s:0'6_0(
b)) →
gen_s:0'6_0(
*(
n928_0,
b)), rt ∈ Ω(1 + b·n928
0 + n928
0)
Induction Base:
times(gen_s:0'6_0(0), gen_s:0'6_0(b)) →RΩ(1)
0'
Induction Step:
times(gen_s:0'6_0(+(n928_0, 1)), gen_s:0'6_0(b)) →RΩ(1)
plus(gen_s:0'6_0(b), times(gen_s:0'6_0(n928_0), gen_s:0'6_0(b))) →IH
plus(gen_s:0'6_0(b), gen_s:0'6_0(*(c929_0, b))) →LΩ(1 + b)
gen_s:0'6_0(+(b, *(n928_0, b)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
from(
X) →
cons(
X,
n__from(
s(
X)))
2ndspos(
0',
Z) →
rnil2ndspos(
s(
N),
cons(
X,
Z)) →
2ndspos(
s(
N),
cons2(
X,
activate(
Z)))
2ndspos(
s(
N),
cons2(
X,
cons(
Y,
Z))) →
rcons(
posrecip(
Y),
2ndsneg(
N,
activate(
Z)))
2ndsneg(
0',
Z) →
rnil2ndsneg(
s(
N),
cons(
X,
Z)) →
2ndsneg(
s(
N),
cons2(
X,
activate(
Z)))
2ndsneg(
s(
N),
cons2(
X,
cons(
Y,
Z))) →
rcons(
negrecip(
Y),
2ndspos(
N,
activate(
Z)))
pi(
X) →
2ndspos(
X,
from(
0'))
plus(
0',
Y) →
Yplus(
s(
X),
Y) →
s(
plus(
X,
Y))
times(
0',
Y) →
0'times(
s(
X),
Y) →
plus(
Y,
times(
X,
Y))
square(
X) →
times(
X,
X)
from(
X) →
n__from(
X)
activate(
n__from(
X)) →
from(
X)
activate(
X) →
XTypes:
from :: s:0' → n__from:cons:cons2
cons :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
n__from :: s:0' → n__from:cons:cons2
s :: s:0' → s:0'
2ndspos :: s:0' → n__from:cons:cons2 → rnil:rcons
0' :: s:0'
rnil :: rnil:rcons
cons2 :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
activate :: n__from:cons:cons2 → n__from:cons:cons2
rcons :: posrecip:negrecip → rnil:rcons → rnil:rcons
posrecip :: s:0' → posrecip:negrecip
2ndsneg :: s:0' → n__from:cons:cons2 → rnil:rcons
negrecip :: s:0' → posrecip:negrecip
pi :: s:0' → rnil:rcons
plus :: s:0' → s:0' → s:0'
times :: s:0' → s:0' → s:0'
square :: s:0' → s:0'
hole_n__from:cons:cons21_0 :: n__from:cons:cons2
hole_s:0'2_0 :: s:0'
hole_rnil:rcons3_0 :: rnil:rcons
hole_posrecip:negrecip4_0 :: posrecip:negrecip
gen_n__from:cons:cons25_0 :: Nat → n__from:cons:cons2
gen_s:0'6_0 :: Nat → s:0'
gen_rnil:rcons7_0 :: Nat → rnil:rcons
Lemmas:
plus(gen_s:0'6_0(n9_0), gen_s:0'6_0(b)) → gen_s:0'6_0(+(n9_0, b)), rt ∈ Ω(1 + n90)
times(gen_s:0'6_0(n928_0), gen_s:0'6_0(b)) → gen_s:0'6_0(*(n928_0, b)), rt ∈ Ω(1 + b·n9280 + n9280)
Generator Equations:
gen_n__from:cons:cons25_0(0) ⇔ n__from(0')
gen_n__from:cons:cons25_0(+(x, 1)) ⇔ cons(0', gen_n__from:cons:cons25_0(x))
gen_s:0'6_0(0) ⇔ 0'
gen_s:0'6_0(+(x, 1)) ⇔ s(gen_s:0'6_0(x))
gen_rnil:rcons7_0(0) ⇔ rnil
gen_rnil:rcons7_0(+(x, 1)) ⇔ rcons(posrecip(0'), gen_rnil:rcons7_0(x))
The following defined symbols remain to be analysed:
2ndsneg, 2ndspos
They will be analysed ascendingly in the following order:
2ndspos = 2ndsneg
(13) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol 2ndsneg.
(14) Obligation:
TRS:
Rules:
from(
X) →
cons(
X,
n__from(
s(
X)))
2ndspos(
0',
Z) →
rnil2ndspos(
s(
N),
cons(
X,
Z)) →
2ndspos(
s(
N),
cons2(
X,
activate(
Z)))
2ndspos(
s(
N),
cons2(
X,
cons(
Y,
Z))) →
rcons(
posrecip(
Y),
2ndsneg(
N,
activate(
Z)))
2ndsneg(
0',
Z) →
rnil2ndsneg(
s(
N),
cons(
X,
Z)) →
2ndsneg(
s(
N),
cons2(
X,
activate(
Z)))
2ndsneg(
s(
N),
cons2(
X,
cons(
Y,
Z))) →
rcons(
negrecip(
Y),
2ndspos(
N,
activate(
Z)))
pi(
X) →
2ndspos(
X,
from(
0'))
plus(
0',
Y) →
Yplus(
s(
X),
Y) →
s(
plus(
X,
Y))
times(
0',
Y) →
0'times(
s(
X),
Y) →
plus(
Y,
times(
X,
Y))
square(
X) →
times(
X,
X)
from(
X) →
n__from(
X)
activate(
n__from(
X)) →
from(
X)
activate(
X) →
XTypes:
from :: s:0' → n__from:cons:cons2
cons :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
n__from :: s:0' → n__from:cons:cons2
s :: s:0' → s:0'
2ndspos :: s:0' → n__from:cons:cons2 → rnil:rcons
0' :: s:0'
rnil :: rnil:rcons
cons2 :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
activate :: n__from:cons:cons2 → n__from:cons:cons2
rcons :: posrecip:negrecip → rnil:rcons → rnil:rcons
posrecip :: s:0' → posrecip:negrecip
2ndsneg :: s:0' → n__from:cons:cons2 → rnil:rcons
negrecip :: s:0' → posrecip:negrecip
pi :: s:0' → rnil:rcons
plus :: s:0' → s:0' → s:0'
times :: s:0' → s:0' → s:0'
square :: s:0' → s:0'
hole_n__from:cons:cons21_0 :: n__from:cons:cons2
hole_s:0'2_0 :: s:0'
hole_rnil:rcons3_0 :: rnil:rcons
hole_posrecip:negrecip4_0 :: posrecip:negrecip
gen_n__from:cons:cons25_0 :: Nat → n__from:cons:cons2
gen_s:0'6_0 :: Nat → s:0'
gen_rnil:rcons7_0 :: Nat → rnil:rcons
Lemmas:
plus(gen_s:0'6_0(n9_0), gen_s:0'6_0(b)) → gen_s:0'6_0(+(n9_0, b)), rt ∈ Ω(1 + n90)
times(gen_s:0'6_0(n928_0), gen_s:0'6_0(b)) → gen_s:0'6_0(*(n928_0, b)), rt ∈ Ω(1 + b·n9280 + n9280)
Generator Equations:
gen_n__from:cons:cons25_0(0) ⇔ n__from(0')
gen_n__from:cons:cons25_0(+(x, 1)) ⇔ cons(0', gen_n__from:cons:cons25_0(x))
gen_s:0'6_0(0) ⇔ 0'
gen_s:0'6_0(+(x, 1)) ⇔ s(gen_s:0'6_0(x))
gen_rnil:rcons7_0(0) ⇔ rnil
gen_rnil:rcons7_0(+(x, 1)) ⇔ rcons(posrecip(0'), gen_rnil:rcons7_0(x))
The following defined symbols remain to be analysed:
2ndspos
They will be analysed ascendingly in the following order:
2ndspos = 2ndsneg
(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol 2ndspos.
(16) Obligation:
TRS:
Rules:
from(
X) →
cons(
X,
n__from(
s(
X)))
2ndspos(
0',
Z) →
rnil2ndspos(
s(
N),
cons(
X,
Z)) →
2ndspos(
s(
N),
cons2(
X,
activate(
Z)))
2ndspos(
s(
N),
cons2(
X,
cons(
Y,
Z))) →
rcons(
posrecip(
Y),
2ndsneg(
N,
activate(
Z)))
2ndsneg(
0',
Z) →
rnil2ndsneg(
s(
N),
cons(
X,
Z)) →
2ndsneg(
s(
N),
cons2(
X,
activate(
Z)))
2ndsneg(
s(
N),
cons2(
X,
cons(
Y,
Z))) →
rcons(
negrecip(
Y),
2ndspos(
N,
activate(
Z)))
pi(
X) →
2ndspos(
X,
from(
0'))
plus(
0',
Y) →
Yplus(
s(
X),
Y) →
s(
plus(
X,
Y))
times(
0',
Y) →
0'times(
s(
X),
Y) →
plus(
Y,
times(
X,
Y))
square(
X) →
times(
X,
X)
from(
X) →
n__from(
X)
activate(
n__from(
X)) →
from(
X)
activate(
X) →
XTypes:
from :: s:0' → n__from:cons:cons2
cons :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
n__from :: s:0' → n__from:cons:cons2
s :: s:0' → s:0'
2ndspos :: s:0' → n__from:cons:cons2 → rnil:rcons
0' :: s:0'
rnil :: rnil:rcons
cons2 :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
activate :: n__from:cons:cons2 → n__from:cons:cons2
rcons :: posrecip:negrecip → rnil:rcons → rnil:rcons
posrecip :: s:0' → posrecip:negrecip
2ndsneg :: s:0' → n__from:cons:cons2 → rnil:rcons
negrecip :: s:0' → posrecip:negrecip
pi :: s:0' → rnil:rcons
plus :: s:0' → s:0' → s:0'
times :: s:0' → s:0' → s:0'
square :: s:0' → s:0'
hole_n__from:cons:cons21_0 :: n__from:cons:cons2
hole_s:0'2_0 :: s:0'
hole_rnil:rcons3_0 :: rnil:rcons
hole_posrecip:negrecip4_0 :: posrecip:negrecip
gen_n__from:cons:cons25_0 :: Nat → n__from:cons:cons2
gen_s:0'6_0 :: Nat → s:0'
gen_rnil:rcons7_0 :: Nat → rnil:rcons
Lemmas:
plus(gen_s:0'6_0(n9_0), gen_s:0'6_0(b)) → gen_s:0'6_0(+(n9_0, b)), rt ∈ Ω(1 + n90)
times(gen_s:0'6_0(n928_0), gen_s:0'6_0(b)) → gen_s:0'6_0(*(n928_0, b)), rt ∈ Ω(1 + b·n9280 + n9280)
Generator Equations:
gen_n__from:cons:cons25_0(0) ⇔ n__from(0')
gen_n__from:cons:cons25_0(+(x, 1)) ⇔ cons(0', gen_n__from:cons:cons25_0(x))
gen_s:0'6_0(0) ⇔ 0'
gen_s:0'6_0(+(x, 1)) ⇔ s(gen_s:0'6_0(x))
gen_rnil:rcons7_0(0) ⇔ rnil
gen_rnil:rcons7_0(+(x, 1)) ⇔ rcons(posrecip(0'), gen_rnil:rcons7_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_s:0'6_0(n928_0), gen_s:0'6_0(b)) → gen_s:0'6_0(*(n928_0, b)), rt ∈ Ω(1 + b·n9280 + n9280)
(18) BOUNDS(n^2, INF)
(19) Obligation:
TRS:
Rules:
from(
X) →
cons(
X,
n__from(
s(
X)))
2ndspos(
0',
Z) →
rnil2ndspos(
s(
N),
cons(
X,
Z)) →
2ndspos(
s(
N),
cons2(
X,
activate(
Z)))
2ndspos(
s(
N),
cons2(
X,
cons(
Y,
Z))) →
rcons(
posrecip(
Y),
2ndsneg(
N,
activate(
Z)))
2ndsneg(
0',
Z) →
rnil2ndsneg(
s(
N),
cons(
X,
Z)) →
2ndsneg(
s(
N),
cons2(
X,
activate(
Z)))
2ndsneg(
s(
N),
cons2(
X,
cons(
Y,
Z))) →
rcons(
negrecip(
Y),
2ndspos(
N,
activate(
Z)))
pi(
X) →
2ndspos(
X,
from(
0'))
plus(
0',
Y) →
Yplus(
s(
X),
Y) →
s(
plus(
X,
Y))
times(
0',
Y) →
0'times(
s(
X),
Y) →
plus(
Y,
times(
X,
Y))
square(
X) →
times(
X,
X)
from(
X) →
n__from(
X)
activate(
n__from(
X)) →
from(
X)
activate(
X) →
XTypes:
from :: s:0' → n__from:cons:cons2
cons :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
n__from :: s:0' → n__from:cons:cons2
s :: s:0' → s:0'
2ndspos :: s:0' → n__from:cons:cons2 → rnil:rcons
0' :: s:0'
rnil :: rnil:rcons
cons2 :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
activate :: n__from:cons:cons2 → n__from:cons:cons2
rcons :: posrecip:negrecip → rnil:rcons → rnil:rcons
posrecip :: s:0' → posrecip:negrecip
2ndsneg :: s:0' → n__from:cons:cons2 → rnil:rcons
negrecip :: s:0' → posrecip:negrecip
pi :: s:0' → rnil:rcons
plus :: s:0' → s:0' → s:0'
times :: s:0' → s:0' → s:0'
square :: s:0' → s:0'
hole_n__from:cons:cons21_0 :: n__from:cons:cons2
hole_s:0'2_0 :: s:0'
hole_rnil:rcons3_0 :: rnil:rcons
hole_posrecip:negrecip4_0 :: posrecip:negrecip
gen_n__from:cons:cons25_0 :: Nat → n__from:cons:cons2
gen_s:0'6_0 :: Nat → s:0'
gen_rnil:rcons7_0 :: Nat → rnil:rcons
Lemmas:
plus(gen_s:0'6_0(n9_0), gen_s:0'6_0(b)) → gen_s:0'6_0(+(n9_0, b)), rt ∈ Ω(1 + n90)
times(gen_s:0'6_0(n928_0), gen_s:0'6_0(b)) → gen_s:0'6_0(*(n928_0, b)), rt ∈ Ω(1 + b·n9280 + n9280)
Generator Equations:
gen_n__from:cons:cons25_0(0) ⇔ n__from(0')
gen_n__from:cons:cons25_0(+(x, 1)) ⇔ cons(0', gen_n__from:cons:cons25_0(x))
gen_s:0'6_0(0) ⇔ 0'
gen_s:0'6_0(+(x, 1)) ⇔ s(gen_s:0'6_0(x))
gen_rnil:rcons7_0(0) ⇔ rnil
gen_rnil:rcons7_0(+(x, 1)) ⇔ rcons(posrecip(0'), gen_rnil:rcons7_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
times(gen_s:0'6_0(n928_0), gen_s:0'6_0(b)) → gen_s:0'6_0(*(n928_0, b)), rt ∈ Ω(1 + b·n9280 + n9280)
(21) BOUNDS(n^2, INF)
(22) Obligation:
TRS:
Rules:
from(
X) →
cons(
X,
n__from(
s(
X)))
2ndspos(
0',
Z) →
rnil2ndspos(
s(
N),
cons(
X,
Z)) →
2ndspos(
s(
N),
cons2(
X,
activate(
Z)))
2ndspos(
s(
N),
cons2(
X,
cons(
Y,
Z))) →
rcons(
posrecip(
Y),
2ndsneg(
N,
activate(
Z)))
2ndsneg(
0',
Z) →
rnil2ndsneg(
s(
N),
cons(
X,
Z)) →
2ndsneg(
s(
N),
cons2(
X,
activate(
Z)))
2ndsneg(
s(
N),
cons2(
X,
cons(
Y,
Z))) →
rcons(
negrecip(
Y),
2ndspos(
N,
activate(
Z)))
pi(
X) →
2ndspos(
X,
from(
0'))
plus(
0',
Y) →
Yplus(
s(
X),
Y) →
s(
plus(
X,
Y))
times(
0',
Y) →
0'times(
s(
X),
Y) →
plus(
Y,
times(
X,
Y))
square(
X) →
times(
X,
X)
from(
X) →
n__from(
X)
activate(
n__from(
X)) →
from(
X)
activate(
X) →
XTypes:
from :: s:0' → n__from:cons:cons2
cons :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
n__from :: s:0' → n__from:cons:cons2
s :: s:0' → s:0'
2ndspos :: s:0' → n__from:cons:cons2 → rnil:rcons
0' :: s:0'
rnil :: rnil:rcons
cons2 :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
activate :: n__from:cons:cons2 → n__from:cons:cons2
rcons :: posrecip:negrecip → rnil:rcons → rnil:rcons
posrecip :: s:0' → posrecip:negrecip
2ndsneg :: s:0' → n__from:cons:cons2 → rnil:rcons
negrecip :: s:0' → posrecip:negrecip
pi :: s:0' → rnil:rcons
plus :: s:0' → s:0' → s:0'
times :: s:0' → s:0' → s:0'
square :: s:0' → s:0'
hole_n__from:cons:cons21_0 :: n__from:cons:cons2
hole_s:0'2_0 :: s:0'
hole_rnil:rcons3_0 :: rnil:rcons
hole_posrecip:negrecip4_0 :: posrecip:negrecip
gen_n__from:cons:cons25_0 :: Nat → n__from:cons:cons2
gen_s:0'6_0 :: Nat → s:0'
gen_rnil:rcons7_0 :: Nat → rnil:rcons
Lemmas:
plus(gen_s:0'6_0(n9_0), gen_s:0'6_0(b)) → gen_s:0'6_0(+(n9_0, b)), rt ∈ Ω(1 + n90)
Generator Equations:
gen_n__from:cons:cons25_0(0) ⇔ n__from(0')
gen_n__from:cons:cons25_0(+(x, 1)) ⇔ cons(0', gen_n__from:cons:cons25_0(x))
gen_s:0'6_0(0) ⇔ 0'
gen_s:0'6_0(+(x, 1)) ⇔ s(gen_s:0'6_0(x))
gen_rnil:rcons7_0(0) ⇔ rnil
gen_rnil:rcons7_0(+(x, 1)) ⇔ rcons(posrecip(0'), gen_rnil:rcons7_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_s:0'6_0(n9_0), gen_s:0'6_0(b)) → gen_s:0'6_0(+(n9_0, b)), rt ∈ Ω(1 + n90)
(24) BOUNDS(n^1, INF)